

## FLAVONOL GLYCOSIDES FROM LEAVES OF *STRYCHNOS VARIABILIS*

THIERRY BRASSEUR and LUC ANGENOT

Laboratoire de Pharmacognosie, Institut de Pharmacie de l'Université de Liège, Rue Fusch, 5, B-4000, Liège, Belgium

(Revised received 15 April 1985)

**Key Word Index**—*Strychnos variabilis*; Loganiaceae; leaves; flavonoids; quercetin 3-O-galactoside; quercetin 3-O-robinobioside; kaempferol 3-O-robinobioside.

**Abstract**—Quercetin 3-O-galactoside, quercetin 3-O-robinobioside and kaempferol 3-O-robinobioside were obtained from the leaves of *Strychnos variabilis*.

### INTRODUCTION

*Strychnos variabilis* is an endemic African species (Kinshasa province, Zaire) whose root bark is a violent poison; it contains indole alkaloids [1]. The leaves contain a very small amount of indoline alkaloids [2]. In this paper, we report the isolation by DCCC and characterization of quercetin 3-O-galactoside and two rare diglycosides quercetin and kaempferol 3-O-rhamnosyl-(1 → 6)galactoside [3].

### RESULTS AND DISCUSSION

#### Monoglycoside

The crude ethyl acetate extract contained quercetin 3-O-galactoside. The structure assignments were determined by TLC (co-chromatography), UV [4],  $^{13}\text{C}$  NMR [5], FAB-MS, hydrolytic and chemical methods. FAB-MS showed signals at  $m/z$  465 and 303 corresponding to the molecular ion [ $M + 1$ ] and to the loss of the sugar unit respectively. The  $^{13}\text{C}$  NMR spectrum showed that galactose was in the  $\beta$ -D-galactopyranose form.

#### Diglycoside

The crude butanol extract contained quercetin 3-O-robinobioside. The structure assignments were determined by TLC, UV [4],  $^{13}\text{C}$  NMR [5], FAB-MS and hydrolytic methods. It is worth noting that this compound has exactly the same chromatographic behaviour as rutin in the usual systems. However, acidic hydrolysis with 6% aqueous hydrochloric acid afforded quercetin, galactose and rhamnose. Mild acidic hydrolysis with formic acid in cyclohexanol [6] yielded a monoglycoside having a lower  $R_f$  value than kaempferol 3-O-glucoside (astragalin); this indicated that galactose was linked to the aglycone. The failure of the glycoside to give a positive test with aniline phthalate indicated that both sugars are linked through their respective reducing group. FAB-MS showed signals at 595, 449 and 287 respectively corresponding to the molecular ion [ $M + 1$ ], the loss of rhamnose and the loss of rhamnosylgalactose unit.  $^{13}\text{C}$  NMR showed that  $\alpha$ -L-rhamnopyranose was linked to C-6 of  $\beta$ -D-galactopyranose [5]. Thus, the new compound is kaempferol 3-O-robinobioside. The only similar compound cited by Harborne [13] is a kaempferol 3-rhamnogalactoside isolated by Steinegger from *Atropa belladonna* leaves [14]. Without complete structure assignments, this compound should not be called kaempferol 3-robinobioside.

Acidic hydrolysis with 6% aqueous hydrochloric acid of kaempferol 3-O-robinobioside afforded kaempferol, galactose and rhamnose. UV spectra showed it was a kaempferol 3-O-glycoside [4]. Mild acidic hydrolysis with formic acid in cyclohexanol [6] yielded a monoglycoside having a lower  $R_f$  value than kaempferol 3-O-glucoside (astragalin); this indicated that galactose was linked to the aglycone. The failure of the glycoside to give a positive test with aniline phthalate indicated that both sugars are linked through their respective reducing group. FAB-MS showed signals at 595, 449 and 287 respectively corresponding to the molecular ion [ $M + 1$ ], the loss of rhamnose and the loss of rhamnosylgalactose unit.  $^{13}\text{C}$  NMR showed that  $\alpha$ -L-rhamnopyranose was linked to C-6 of  $\beta$ -D-galactopyranose [5]. Thus, the new compound is kaempferol 3-O-robinobioside. The only similar compound cited by Harborne [13] is a kaempferol 3-rhamnogalactoside isolated by Steinegger from *Atropa belladonna* leaves [14]. Without complete structure assignments, this compound should not be called kaempferol 3-robinobioside.

Although *S. variabilis* leaves contain quercetin 3-O-robinobioside and the corresponding monoglycoside, quercetin 3-O-galactoside, we have not found any trace of kaempferol monoglycoside.

### EXPERIMENTAL

**Plant material.** Leaves of *Strychnos variabilis* were collected in 1951 at the Botanical Garden of Kisantu and well stored, sheltered from light, in the laboratorium of Pharmacognosy (Liège University). Herbarium specimens are kept in the

Maksytina isolated a quercetin 3-O-rhamnogalactoside, bioquercetin, from the unripe fruits of *Robinia*

Botanical Garden of Belgium at Meise and in the University of Liege (Duvigneaud, 147 et 725). An extract from this sample has the same chromatographic behaviour as fresh leaves collected in 1980 at Kinshasa by Professor Kambu and stored in the University of Liege (Kambu, s.n.).

*General techniques.* TLC of glycosides was carried out on silica gel 60-F254 precoated plastic sheets (Merck) with EtOAc-HCOOH-H<sub>2</sub>O (6:1:1); TLC of aglycones on cellulose plastic sheets (Merck) with HOAc-H<sub>2</sub>O (3:2) and CHCl<sub>3</sub>-HOAc-H<sub>2</sub>O (10:9:1); aglycones and glycosides are visualized with Naturstoffreagenz A-PEG 400; TLC of sugars on silica gel 60-F 254 pre-coated plastic sheets (Merck) with *n*-BuOH-Me<sub>2</sub>CO-NaH<sub>2</sub>PO<sub>4</sub> 1.6% (4:5:1) (Eur. Ph.) and visualized with aniline phthalate reagent. Hydrolyses and recording of the UV spectra with the usual shift reagents were made according to standard procedures [4]. <sup>13</sup>C NMR spectra were recorded in DMSO-*d*<sub>6</sub> at 30° at 75.5 MHz. <sup>1</sup>H NMR spectra were recorded in DMSO-*d*<sub>6</sub> at 30° at 300 MHz.

*Isolation.* Leaves (100 g) were extracted with EtOH and the concd extract was taken up in boiling H<sub>2</sub>O. The filtrate was successively extracted by Et<sub>2</sub>O, EtOAc and *n*-BuOH. The crude EtOAc (2.5 g) extract was purified by CC (Lobar <sup>R</sup> LichroPrep <sup>R</sup> RP 8; 20–40% aq. Me<sub>2</sub>CO). The purified extract was submitted to DCCC with CHCl<sub>3</sub>-MeOH-PrOH-H<sub>2</sub>O (5:6:1:4) in the descending mode (300 columns, 40 cm × 2 mm, instrument DCCA, Tokyo Rikakikai, Japan). The crude BuOH extract (4.6 g) purified by CC (Lobar <sup>R</sup> LichroPrep <sup>R</sup> RP 8; 20–30% aq. Me<sub>2</sub>CO). The purified extract (1.5 g) was submitted to DCCC with CHCl<sub>3</sub>-MeOH-PrOH-H<sub>2</sub>O (10:12:3:8) in the descending mode (300 columns, 40 cm × 2 mm, instrument DCCA, Tokyo Rikakikai, Japan).

*Quercetin 3-O-galactoside.* UV, <sup>13</sup>C NMR in agreement with published data [4, 5].

*Quercetin 3-O-rhamnosyl(1 → 6)galactoside.* UV  $\lambda_{\text{max}}^{\text{MeOH}}$  nm: 360, 298 sh, 265 sh, 258; (NaOMe) 413, 329 sh, 273; (AlCl<sub>3</sub>) 432, 333 sh, 303 sh, 276; (AlCl<sub>3</sub> + HCl) 402, 365 sh, 300 sh, 270; (NaOAc) 397, 326, 273 (NaOAc + H<sub>3</sub>BO<sub>3</sub>) 380, 296 sh, 262. <sup>13</sup>C NMR (75.5 MHz, DMSO-*d*<sub>6</sub>): δ 177.4 (C-4), 164.4 (C-7), 161.2 (C-5), 156.4 (C-2, C-9), 148.6 (C-4'), 144.9 (C-3'), 133.6 (C-3), 121.9 (C-1'), 121.1 (C-6'), 116 (C-5'), 155.2 (C-2'), 103.8 (C-10), 102.2 (C-1''), 100.1 (C-1'''), 98.8 (C-6), 93.6 (C-8), 73.6 (C-5''), 73.1 (C-3''), 72 (C-4''), 71.1 (C-2''), 70.7, 70.5 (C-2'', C-3''), 68.3 (C-5''), 68.1 (C-4''), 65.2 (C-6''), 17.9 (C-6''). <sup>1</sup>H NMR (300 MHz, DMSO-*d*<sub>6</sub>): δ 7.7 (1H, dd, *J* = 8.5 and 2 Hz, H-6'), 7.5 (1H, *d*, *J* = 2 Hz, H-2''), 6.8 (1H, *d*, *J* = 8.5 Hz, H-5'), 6.4 (1H, *d*, *J* = 1.7 Hz, H-8), 6.2 (1H, *d*, *J* = 1.6 Hz, H-6), 5.3 (1H, *d*, *J* = 7.6 Hz, galactosyl H-1), 4.4 (1H, rhamnosyl H-1), 3.3 (*m*, sugar

protons), 1.1 (3H, *d*, *J* = 6 Hz, rhamnosyl-Me).

*Kaempferol 3-O-rhamnosyl(1 → 6)galactoside.* UV  $\lambda_{\text{max}}^{\text{MeOH}}$  nm: 349, 301 sh, 264; (NaOMe) 402, 326, 275; (AlCl<sub>3</sub>) 400, 353, 303 sh, 275, 229; (AlCl<sub>3</sub> + HCl) 395, 349, 303 sh, 275, 231; (NaOAc) 395, 309, 274; (NaOAc + H<sub>3</sub>BO<sub>3</sub>) 355, 267; <sup>1</sup>H NMR (300 MHz, DMSO-*d*<sub>6</sub>): δ 12.6 (1H, *s*, OH-5), 8.04 (2H, *d*, *J* = 8 Hz, H-2' and H-6') 6.85 (2H, *d*, *J* = 8 Hz, H-3' and H-5'), 6.4 (1H, *s*, H-8), 6.18 (1H, *s*, H-6), 5.31 (1H, *d*, *J* = 7 Hz, galactosyl H-1), 4.39 (1H, *s*, rhamnosyl H-1), 1.05 (3H, *d*, *J* = 6 Hz, rhamnosyl-Me); <sup>13</sup>C NMR (75.5 MHz, DMSO-*d*<sub>6</sub>): δ 177.5 (C-4), 164 (C-7), 161.2 (C-5), 160.0 (C-4'), 156.5 (C-9, C-2), 133.3 (C-3), 131 (C-6'), 120.9 (C-1'), 115.1 (C-3', C-5'), 103.8 (C-10), 102.1 (C-1''), 100.1 (C-1'''), 98.8 (C-6), 93.8 (C-8), 73.6 (C-5''), 73.0 (C-3''), 72.0 (C-4''), 71.1 (C-2''), 70.7, 70.4 (C-2'', C-3''), 68.3 (C-5''), 68.1 (C-4''), 65.4 (C-6''), 17.9 (C-6'').

## REFERENCES

1. Tits, M. (1982) Ph.D. Thesis, University of Liege.
2. Tits, M. and Angenot, L. (1980) *Pl. Méd. Phytothér.* **4**, 213.
3. Brasseur, Th. and Angenot, L. (1984) 32nd Annual Congress for Medicinal Plant Research, 23–28 VII. *Pharmaceutisch Tijdschrift voor België* **3**, 356.
4. Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970) *The Systematic Identification of Flavonoids*. Springer, Berlin.
5. Markham, K. R. and Mohan Chari, V. (1982) in *Flavonoids: Advances in Research* (Harborne, J. B. and Mabry, T. J., eds) Chapman & Hall, London.
6. Fox, D., Savage, W. and Wender, S. (1953) *J. Am. Chem. Soc.* **75**, 2504.
7. Maksyutina, N. P. (1967) *Khim. Prir. Soedin.* **3**, 226.
8. Farkas, L., Kalman, A., Nograd, M. and Vermes, B. (1976) *Acta Chim. Acad. Scient. Hung.* **91**, 445.
9. Lakhman, Ya., Litvinenko, V. I., Nadezhina, T. P. and Dranik, L. I. (1978) *Chem. Nat. Compds* **14**, 111.
10. Williams, C. A. and Harborne, J. B. (1977) *Biochem. Syst. Ecol.* **5**, 221.
11. Bykov, V. and Glyzin, V. (1982) in *The Flavonoids: Advances in Research* (Harborne, J. B. and Mabry, T. J., eds) p. 286. Chapman & Hall, London.
12. Ulubelen, A., Timmerman, B. and Mabry, T. (1980) *Phytochemistry* **19**, 905.
13. Steinegger, E., Sonanini, D. and Tsingaridas, K. (1963) *Pharm. Acta Helv.* **38**, 119.
14. Harborne, J. B. and Williams, C. A. (1975) *The Flavonoids*, p. 415. Chapman & Hall, London.